Subject and Author index

Numbers refer to the page where a definition or explanation of, and/or a figure or a table for, a given subject is found. Author names are given with the number of the first page of the paper in which they are involved.

A
Absorption spectra of gems, 352
Addis, A., 151
Agate, 31, 32, 328, at Idar-Oberstein museum, 37, provenance in archaeometry, 37
Alteration mechanisms on pigments in Central Asian wall paintings, 310
Altered gems, 340
Amber, 337
Amethyst, 57, 327
Ancient route, reconstructed using obsidian, 404
Ancient Mediterranean polychrome stones, 367
Angelini, I., 87
Antiquity and Late Antiquity, 122
Aquamarine, 329
Archaeological, clay, composition, 249, issues for copper slag formation, 217, materials, SR microspectroscopy of, 411
Archaeology, and pigments, 285, 288, IR imaging in, 426
Archaeometallurgical studies of copper smelting, 208
Archaeometric problems with polychrome stones, 370
Archaeometry, gemmology and, 345, opal provenance in, 23
Artioli, G., 1, 87, 151
Atmosphere, of slag formation, 213
Attenuated total reflection geometry, 419, -FTIR point analyses for identifying paint cross-sections, 299

B
Barca, D., 393
Beryl, 329
Binders, inorganic, classification of, 158, 160
Blue glass, Egypt, 109
Blue quartz, 60
Bourgarit, D., 203
Brick, manufacture, Sudan, 155, walls, Sardinia, Italy, 156
Bricks, inscribed, Iran, 157
Bronze Age, 92, copper slag smelting, 218, Italian vitreous materials, 91, pottery, 258
Buckland, William, volume by, 4
Bucranium amulet, 93

C
Calcareous illitic clay, phase stability in, 245
Carnelian, 328, black — onyx, 45, brown — sardonyx, 45, Cr-chalcedony, 46, gem silica, 46, heliotrope, 46, 47, green — chrysoprase, 46, provenance in archaeometry, 43, red chalcedony, 39,
Carthaginian, glass pendant, 118
Catalogue of coloured stones, 372
Cathodoluminescence imaging, 164
Celadon-glazed porcelains, 162
Concrete structures, 181
Conservation, and restoration, IR and SR in, 438, of binders, 186

©Copyright 2019 the European Mineralogical Union and the Mineralogical Society of Great Britain & Ireland
DOI: 10.1180/EMU-notes.20.index
Copper metallurgy, history of, 203
Copper smelting, 204, 206, 207
Corundum, 334
Counterfeit gems, 340
Crisci, G.M., 393
Cristobalite, Raman spectroscopy, 30
Cultural heritage, artifacts, microspectroscopy of archaeological materials, 411, IR imaging in, 426, materials, 8

D
Deffufa, Kerma, Nubia, 153
Demonic mask, Phoenecian glass pendant, 118
Desert glass, Libyan, 356, 357, 360
Diamond, 334

E
Earthenware, composition of, 252, 262, low-fired, 251, 254, medium-fired, 260, East Asia, ancient, 326
Egypt, blue glass, 109, shrine elements, 121
Egyptian blue, lion, jar, 106
Electron micrographs of layers of paint, 298
Elora caves, kemp-loaded lime, 169
EPMA, technique for investigating glass, 132
Equilibria, micro- or local?, 242, 244
Ettringite, Portland Cement, 180
EXAFS, technique for investigating glass, 132

F
Faience, 91, activity in Bronze age Egypt and Near East, 102, beads, 100, bowl, 99, collar and button, 105, computed X-ray micro-tomographic image of, 136, hippo, 100, ornament, 99
Fake gems, 340
Fayalite habits in Bronze Age Trentino smelting site, 221
Fayum, mummy portrait, 283
Fired-brick dome, India, 169
Firing, oxidizing vs. reducing, 245
Flint, 48
Fluorite, 335
FTIR, of archaeological materials, 414, spectrum, pigment, 293

G
Garnet, 330
Gemmology and archaeometry, 345
Gems and man, 323
Geography of gem deposits, 340
Geology of gem deposits, 340
Glass, beads, Italy, 113, bottles, Egypt, 109, from India and China, 124, Late Helladic III, 111, techniques for investigating, 131, textures, 91, through history, 87, -ribbed bowl, Late Hellenistic, 120
Glass-making transition, beginning of the first millennium BC, 125, end of the first millennium AD, 127
Gliozzo, E., 13
Goldstone, 89
Gratuze, B., 87
Greece, glass-ribbed bowl, Late Hellenistic, 120
Guan stoneware dish, 267
Gustave Courbet painting, two underlying compositions, 315

H
Hard-paste Meissen porcelain, 271, 272
Heimann, R.B., 233
Heinrich von Tebra, F.W., volume by, 3
Hellenistic, Late, glass-ribbed bowl, 120
History of gems, 323
HMG blue bead, 113
Hyaline quartz, 53
Hydraulic mortars, 170

I
ICP-MS, technique for investigating glass, 132
Illitic clay, phase stability in, 245
INAA, technique for investigating glass, 132
IR, microspectroscopy of archaeological materials, 411, 418, spectra, silver degradation area in altarpiece painting, 431, spectral quality, conventional vs SR-IR, 420
Iron Age, 116
Iron Crown, 350, 352, 353, 354, 355
Italy, provenancing of archaeological obsidian in Neolithic sediments, 399

J
Jade, 331
Japan, precious stones from, 326
Jasper, 48, 339
Jet, 338

K
King Tutankhamun’s pectoral, 88, 356
Knossos, Crete, 166
L
Lapis lazuli, 313, 332
Lazzarini, L., 367
Le Corbusier, architect, 181
Libyan desert glass, 356, 357, 360
Lime-based binders, 161, 163, throne room of King Minos, 166
Lipari, Italy, obsidian and volcanic glass from, 395

M
Macro-XRF Hg L mapping, 304
Maggetti, M., 233
Magnetic susceptibility of calcareous illitic clay fired under reducing and oxidizing compositions, 249
Malachite, 336
Manganese oxides used for Palaeolithic cave art, Dordogne, France, 306
Marcelli, A., 411
Materials of historical interest, IR in, 424
Maya blue pigment, 296
Mediterranean, obsidian, 395, composition of vitreous materials from, 92
Meissner porcelain, 271
Mesoamerica, obsidian in, 400, 403
Michelson interferometer, 416
Micro-Raman spectrum, pigment, 294
Micro-tomography, 136, 184
Micro-XRF spectrum, pigment, 295
Middle Ages, early, 123
Milky quartz, 53
Mineral pigments, 283
Mineralogy, of slags, 203
Minoan (Bronze Age) pottery, 258
Miriello, D., 393
Modern mineralogy, 1
Modern period, 124
Morganite, 26, XRD, 29, Raman spectroscopy, 30
Mortars, and binders, 151, ancient, composition of, 161, CL image of, 164, natural hydraulic lime, 176
Moulded glass, Late Helladic III, 111
Mud-brick Qubba (domed mausoleum), Dongola, Sudan, 153, wall, Catalhoyuk, Turkey, 154

N
Natural hydraulic lime (NHL) mortars, 176
Naturalis Historia, 22, 325

O
Oberti, R., 1
Obsidian, 339, and volcanic glass shards, 393, black, 88
Old Testament, minerals of, 326
Opal, 332, 333, classifying, 14, 15
Opalite, 332
Optical, images of inclusions in gems, 351, micrographs, pigments, 292
Oxidizing vs. reducing firing, 245

P
Paint, 285
Palaeolithic cave art, France, 306
Palmarola, Italy, obsidian and volcanic glass from, 395
Pantelleria, Italy, obsidian and volcanic glass from, 395
Pb glass, deep focus image, Egypt, 136
Pearl, 337
Pectoral, King Tutankhamun’s, 356, 358
Phase stability in calcareous illitic clay, 245
Phoenician glass pendant, 118
PIGE, technique for investigating glass, 132
Pigment, in paintings, 297, mineral, 283
Pink quartz, 56
PIXE, technique for investigating glass, 132
Pliny, on agate, 34, on amethyst, 58, on blue quartz, 61, on chert, flint and jasper, 51, on gems, 326, on green chalcedonies, 47, on opals, 21
Polychrome stones, ancient Mediterranean, 367
Porcelain, high-fired, 265, triaxial, reaction scheme of formation of, 273
Portland clinker, 178
Portlandite, 180
Pottery, Bronze Age, 258
Pozzolans, 170
Prasiolite, 57
Process duration, slag formation, 213
Prosperi, L., 345
Provenancing of obsidian and volcanic glass shards, 393
Ptolemaic period, Egypt, shrine elements, 121

Q
Qing Dynasty, China, 89
Quartz, family minerals, 327, varieties, classifying, 14, 15, Raman spectroscopy, 30
Raman spectra, image of yellow glass bead, 135
Raman spectroscopy, tridymite, 30
Rapp, G., 323
Reaction scheme of formation of triaxial porcelain, 273
Reiche, I., 283
Riccardi, M.P., 345
Roman world, 151
Rose quartz, 56
Ruby, rutile inclusions in, 351
Rutile, inclusions in ruby, 351

Sapphire, rutile inclusions in, 351
Sard, orange chalcedony, 39
Sardinia, Italy, obsidian and volcanic glass from, 395
Secco, M., 151
Seftonite, 47
SEM, -EDX, technique for investigating glass, 132,
image of glass (Etruscan blue-green), 133,
image of yellow glass bead, 135
Serpentine dish, 324
Shell, 338
Silica, -based glass, compositional groups of
archaeological and historic, 94, dissolution
and precipitation, 18, theme, 13
Silver degradation area in altarpiece painting, IR
spectra, 431
Slags, mineralogy of, 203
Smoky quartz, 53
SR-FTIR images, 429
SR-IR images, 427, of a Buddhist mural painting, 434
Steatite, 93, 97
Stones, Ancient Mediterranean polychrome, 367
Stoneware, high-fired, 265
Study protocol, gemmology and archaeometry, 349
Stupa, Sanchi, India, 169
Synchrotron radiation infrared microspectroscopy
of archaeological materials, 411, 418

Tarantino, S.C., 345
Temperature of slag formation, 212
Terra Sigillata ceramics, 261
Thai stoneware, 269, chemical composition of, 270
Theophrastus, 325
Thermodynamics and kinetics, ceramics, 233
Topaz, 330
Tourmaline, 329, 331
Traditional vs. modern mineralogy, 1
Transmission reflection geometry, 419
Tridymite, Raman spectroscopy, 30
Turquoise, 336
Tyrhenian, obsidian, 395, 396, 399

Vitreous materials, through history, 87
Vitruvian, legacy, 151, recipes, 170
Volcanic glass shards, 393

XANES, technique for investigating glass, 132
XAS, technique for investigating glass, 132
XRPD patterns, of cement paste, 183, of Maya blue
pigment, 296

Zema, M., 345
Zircon, 330